
Agility via Software
Engineering Practices

Agile Tour Montréal - November 2015

Steve Mercier

Who am I?

I participated in multiple software development projects:

• from very small (<10 person) to large (~400 persons)
• from a long time ago (>20 years) up to now
• from different angles/roles: Developer, Architect, PM, DevOps/

BuildMaster, Software Release Manager
• I have seen software methods/processes come and go: Waterfall,

RUP, OpenUP, XP, Scrum, Scaled Agile, etc.

But the essential remains:
I believe that to produce good software, it takes good people +

resources AND discipline/professionalism/focus!

But enough about me

What about you?

Are You Agile?
Agile is not easy… and is not only about ceremonies + tools!

A few questions
• Raise your hand, if you participate in:

• Daily stand-up meetings

• Sprint planning meetings

• Sprint reviews and demos

• Sprint retrospectives and lessons learned

• Regular backlog grooming sessions

Now THE question
• By raising your hand

• Who believes that he/she works in an Agile
environment?

What would be a good
measure of Agility

anyway?

We will come back to this at the end

What is your (real) release
frequency?

• At what frequency are you delivering software updates that add value to
your clients?

• Once a year?

• Once a quarter?

• Once a month?

• Once a sprint?

• Once a day?

Without breaking any previously delivered
business value that you want to retain…?

Scrum Overview

Agile Simplified Overview

How can we ensure this loop works smoothly and fast?

Client

PO

Team

Delivery

What are the typical
Agile issues?

Elements preventing Agility that could be fixed
by a specific software development practice?

Agile Issue #1:
Communication Issues

Dozens of ways to communicate
With more and more possibilities, growing!

Communication Issue Example
“But, I published my design document on SharePoint!”

Communication Issue Example
“But, I sent you an email!”

Communication Issue Proposition
Only one truly Agile communication technique: Dialog!

What technique can improve dialog?

You could consider BDD to close the communication
gap between business people and technical people

Agile Issue #2:
Manual Interventions

Everything not automated
reduces your Agility

Manual triggers can take a long time
Manual = Time++;

As your manager might say
Time == Money();

What techniques can reduce manual steps?

You could consider using DevOps:
CI server, CD server, Infrastructure as Code to automate

as mush as possible your release process

DevOps

Client

PO

Team

Delivery

What techniques can reduce manual steps?

Continuous Integration

What techniques can reduce manual steps?

Continuous Delivery/Deployment

What techniques can reduce manual steps?

Infrastructure As Code

Agile Issue #3:
Customers not really
validating increments

Not fully involved customer…

Customer not validating increments
Proposition

You should again consider using BDD to involve your
customers as much as possible; this would ensure a

relationship between the needs and the demo

• Various things could contribute to this issue (cumulative!):

• Specifications created without customer’s involvement

• Specifications not properly handed over to teams for execution

• Specifications not validated automatically or systematically every sprint

• Customers not involved in sprint demos or not giving feedback during demos

• Not delivering produced software regularly to customers for evaluation

Remember, you want this

Not that!

Agile Issue #4:
PO wants it all
(aka priority

management issue)

Be careful about
scope creep and

absence of
prioritization!

PO wanting it all
I do not really have a specific technique

for this one…

I suggest selecting the right PO in the first
place
 AND

then to use proper backlog grooming
techniques

(Buy him the book 50 quick ideas to
improve your user stories by Gojko Adzic)

Agile Issue #5:
Demos done from

unreleased software

(aka Works at my desk)

Your software must have it!

Demos from unreleased software /
Difficulty to release in production

Involve Ops people in sprints
Releasing in prod should be doable by
anyone, anytime, using a single click

(rollback is obviously a feature you will want!)

Agile practices to
overcome the presented

Agile issues

Intro to a few + associated
tools

BDD—Behaviour
Driven Development

BDD—Behaviour Driven Development
Bridges the gap between customers/business people

and teams
1-An

technology
agnostic

feature file
developed
with your

users

This is
somehow an
executable

specification

2-A technology
specific code

generator
(SpecFlow/C#,
JBehave/Java,
Behave/Python,

etc.)

BDD—Behaviour Driven Development

3-Complete cycle
with inner TDD

BDD—Behaviour Driven Development

CI—Continuous
Integration

Continuous Integration
Continuous Builds, Continuous Testing, Continuous

Inspections

Continuous Integration

Not only build on commit by the continuous integration
server, but also:

• Systematic unit tests (e.g. NUnit, JUnit)
• Aim at 70-90% code coverage
• Measure your coverage (e.g. dotCover, NCover)

• Code inspections (static analysis, linter, code complexity)

Continuous Integration

cont’d:

• Publish built artifacts on artifacts server (e.g. Artifactory)
• Deploy into staging environments

• Run integration/functional testing
• Run performance testing

• Publish reports of selected metrics for the above
elements (e.g. SonarQube)

CD—Continuous
Delivery/Deployment

Continuous Delivery/Deployment
Always have a shippable version available for your customers

Ex: GO CD (from Thoughtworks - now Open Source)
You can integrate your CI servers (Jenkins) with a CD server

Continuous Delivery/Deployment
A good practice to deploy gradually using cascaded
environments:

• (Development)

• Test
• Less resources, used mostly to validate business logic

• Staging/Pre-Production
• More representative of the production environment. Can be

used for load/performance testing. Typically uses a data set
that is a copy of the Production data set.

• Production

IaC—Infrastructure as
Code

Infrastructure as Code
Your code is under CM, but your

infrastructure is typically not! It also needs
to be versioned, tracked and automated!

There are so many tools available. But essentially,
keep ALL under source control, including what it takes
to reproduce your production environment from ZERO

Infrastructure as Code

• How to restart a hardware environment/virtual machines

• How to install the platform on the machines

• How to install the applications on the platforms

• How to configure the whole stack

• The databases schemas and content

• Everything!

If you are not convinced, think about your disaster
recovery plan (you have one, right?)

Infrastructure as Code

What if your server room is destroyed by water/
fire? (or the one from your cheap cloud provider…)

With IaC at least, the software part is covered in
case of disaster

DevOps

DevOps
• A Good app without an infrastructure to run it is useless…

• A superb, scalable infrastructure without an app adding
business value to a customer is also useless…

• You need both!

• DevOps should not be a separate team! It serves to
bridge the gap between development and operations
teams.

• And if you are not convinced that DevOps cannot
typically be a single person’s responsibility…

DevOps related tools

Agile Values vs.
Agile Practices

Agility is more than Agile values and
ceremonies

It is acting as per the Agile values and
producing software with related best practices

But where to start?
Every Agile cycle, try to improve on those issues, trying

to automate everything you can, while having the
conversation with your key stakeholders

What would be a good
measure of Agility

anyway?

Suggestion #1:

The frequency at which you are
delivering software updates

that add business value to your clients
without breaking any previously

delivered business value that you
want to retain

(aka The capability to release)

Suggestion #2:

The time it takes you to deliver
the smallest change/fix to your

software in production
(aka The time to release)

Engineering requirements to attain
Agility:

Good people with good tools,
applying proven software

development best practices
consistently with discipline

using continuous improvement
principles

Questions or
comments?

© Pyxis Technologies inc.

Thanks!

© Pyxis Technologies inc.

Titre sur mesure

POINTS FORTS 1

Thank&you !

Quest ions

pyxis&tech.com

