
Controlling Your
Environments using

Infrastructure As Code
ConFoo Montréal - February 2016

Steve Mercier

Copyright Software That Matters… Done Right! Inc. 2016

Who am I?

I participated in multiple software development projects:

• from very small (<10 person) to large (~400 persons)
• from a long time ago (>20 years) up to now
• from different angles/roles: Developer, Architect, PM, DevOps/

BuildMaster, Software Release Manager
• I have seen software methods/processes come and go: Waterfall,

RUP, OpenUP, XP, Scrum, Scaled Agile, etc.

But the essential remains:
I believe that to produce good software, it takes good people +

resources AND discipline/professionalism/focus!

Are You Agile?
Agile is not easy… and is not only about ceremonies + tools!

Scrum Overview

Nothing on the previous slide concerning
software context, where is the code

delivered, running, performing…

Agile typically deals with this with the Definition Of Done
concept, sadly overlooked way too often…

What would be a good
measure of Agility

anyway?

Suggestion #1:

The capability to release
(aka)

The frequency at which you are
delivering software updates

that add business value to your clients
without breaking any previously

delivered business value that you want
to retain

Suggestion #2:

The time to release
(aka)

The time it takes you to deliver
the smallest change/fix to your

software in production

Given that:
What prevents true

agility?

What prevents you to release?

What prevents you to release fast?

From my point of view:
Lack of environments’

management
True for all types of environments:

DEV, QA, Staging, Production

Platform dependencies?
Do you manage them?

ex: Frameworks dependencies, external libraries
dependencies, etc. Are they either never updated or are
they continuously creating problem when you upgrade

them?

OS dependencies?
Do you manage them?

How is the OS changed on your platform? Does it break your applications
sometimes? Any logs/traces of those changes? Can they be rolled back in case

of problems?

Hardware/VM specs
dependencies?

Do you manage them?
What happens if available RAM/Disk/Network gets below

what your applications need? Do you know what they need?

If you manage your
environments, do you

manage them manually?

Everything not automated
reduces your Agility

Manual triggers can take a long time
Manual = Time++;

As your manager might say
Time == Money();

What techniques can reduce manual steps?

You could consider using DevOps:
CI server, CD server, Infrastructure as Code to automate

as mush as possible your release process

DevOps

Client

PO

Team

Delivery

What techniques can reduce manual steps?

Continuous Integration

What techniques can reduce manual steps?

Continuous Delivery/Deployment

What techniques can reduce manual steps?

Infrastructure As Code

Are your Agile Demos
done from unreleased

software

(aka Works at my desk)

Your software must have it!

Demos from unreleased software /
Difficulty to release in production

Involve Ops people in sprints
Releasing in prod should be doable by
anyone, anytime, using a single click

(rollback is obviously a feature you will want!)

CD—Continuous
Delivery/Deployment

Continuous Delivery/Deployment
Always have a shippable version available for your customers

Ex: GO CD (from Thoughtworks - now Open Source)
You can integrate your CI servers (Jenkins) with a CD server

Continuous Delivery/Deployment
A good practice to deploy gradually using cascaded
environments:

• (Development)

• Test
• Less resources, used mostly to validate business logic

• Staging/Pre-Production
• More representative of the production environment. Can be

used for load/performance testing. Typically uses a data set
that is a copy of the Production data set.

• Production

IaC—Infrastructure as
Code

Infrastructure as Code
Your code is under CM, but your

infrastructure is typically not! It also needs
to be versioned, tracked and automated!

There are so many tools available. But essentially,
keep ALL under source control, including what it takes
to reproduce your production environment from ZERO

Infrastructure as Code

• How to restart a hardware environment/virtual machines

• How to install the platform on the machines

• How to install the applications on the platforms

• How to configure the whole stack

• The databases schemas and content

• Everything!

If you are not convinced, think about your disaster
recovery plan (you have one, right?)

Infrastructure as Code

What if your server room is destroyed by water/
fire? (or the one from your cheap cloud provider…)

With IaC at least, the software part is covered in
case of disaster

DevOps

DevOps
• A Good app without an infrastructure to run it is useless…

• A superb, scalable infrastructure without an app adding
business value to a customer is also useless…

• You need both!

• DevOps should not be a separate team! It serves to
bridge the gap between development and operations
teams.

• And if you are not convinced that DevOps cannot
typically be a single person’s responsibility…

DevOps related tools

What could be potential
solutions to deliver and

faster?

1- Testing (TDD, BDD)
2- CI
3- CD
4- IaC

DEMO

Demo content
• GO CD presentation

• Application build pipeline
• connected to GitHub for app code
• running unit tests

• Triggering Staging pipeline on success
• using Vagrant + VirtualBox + Ansible to provision

production like environment for system tests
• connected to GitHub for IaC code

• Triggering Deployment pipeline on success
• using Ansible (Tower) to provision non VM

production multiple environments

Application Build/Unit
tests

Continuous Integration pipeline
Triggered on code changes

Staging pipeline
For deployment + system testing

Triggered on new application integration OR new IaC code

Deployment pipelines
Used to actually deploy the application into production

triggered on successful staging pipelines OR manually when needed

Discussion
How do you do it?

Agile Values vs.
Agile Practices

Agility is more than Agile values and
ceremonies

It is acting as per the Agile values and
producing software with related best practices

But where to start?
Every Agile cycle, try to improve on those issues, trying

to automate everything you can, while having the
conversation with your key stakeholders

Questions or
comments?

Thanks!

softwarethatmattersdoneright.com
+

http://ca.linkedin.com/in/stevemercier

Copyright Software That Matters… Done Right! Inc. 2016

http://softwarethatmattersdoneright.com
http://ca.linkedin.com/in/stevemercier

Backup

Install provisioning
tools

Ex: Vagrant +
VirtualBox

- vagrant init hashicorp/precise64
- vagrant up
- vagrant ssh

- vagrant destroy

Ex: See how using the Vagrant
file, we can provision the

platform
config.vm.box = “hashicorp/precise64"

config.vm.network :forwarded_port, guest: 80, host: 4567
config.vm.provision :shell, path: “bootstrap.sh"

#!/usr/bin/env bash

apt-get update
apt-get install -y apache2
if ! [-L /var/www]; then

 rm -rf /var/www
 ln -fs /vagrant /var/www

fi
apt-get install -y python3

How to install the
applications on the

platforms
Ex: We can simply reuse the GIT clone using a shared

folder between host and guest VM or use similar
platform provisioning technique to perform a git clone in

the VM after provisioning

