Controlling Your
ENnvironments using
Infrastructure As Code

ConFoo Montréal - February 2016

Steve Mercier

Copyright Software That Matters... Done Right! Inc. 2016

Who am |7

| participated in multiple software development projects:

e from very small (<10 person) to large (~400 persons)

e from a long time ago (>20 years) up to now

e from different angles/roles: Developer, Architect, PM, DevOps/
BuildMaster, Software Release Manager

* | have seen software methods/processes come and go: Waterfall,
RUP, OpenUP, XP, Scrum, Scaled Agile, etc.

But the essential remains:

| believe that to produce good software, it takes good people +
resources AND discipline/professionalism/focus!

Are You Agile”

Agile is not easy... and is not only about ceremonies + tools!

Inputs from Executives, ®
Team, Stakeholders, m

Customers, Users .
Daily Scrum

Scrum p
Meeting

Master
Every

24 Hours
©

© e & ¢
m m My e
Product Owner The Team Sprint Reyiew

Team selects , Task @
starting at top Breakout @
list of what as much as it

Is required: e commit L Sprint end date and tnd
features, to deliver by Sprint Ft’eam iy ik Finished Work

stories, ... end of Sprint Backlog do not change ® O

Sprint L
Product Planning
Backlog Meeting .
Sprint

Retrospective

N

RINIOVNBIW N -
\

Ranked

7

crum Overview

Nothing on the previous slide concerning
software context, where is the code
delivered, running, performing...

Agile typically deals with this with the Definition Of Done
concept, sadly overlooked way too often...

What would be a good
measure of Agility
anyway"

Suggestion #1:

The capability to release

(aka)

The frequency at which you are
delivering software updates
that add business value to your clients
without breaking any previously

delivered business va

ue that you want

to retain

Suggestion #2:

I'he time to release
(aka)
The time It takes you to deliver
the smallest change/fix to your
software in production

Given that:
What prevents true
agility”

What prevents you to release”’

What prevents you to release fast”?

From my point of view:
| ack of environments’
management

True for all types of environments:
DEV, QA, Staging, Production

Platform dependencies?
Do you manage them?

ex: Frameworks dependencies, external libraries
dependencies, etc. Are they either never updated or are
they continuously creating problem when you upgrade
them?

OS dependencies”?
Do you manage them?

How is the OS changed on your platform? Does it break your applications
sometimes? Any logs/traces of those changes? Can they be rolled back in case
of problems?

Hardware/VM specs
dependencies?
Do you manage them?

What happens it available RAM/Disk/Network gets below
what your applications need? Do you know what they need?

f you manage your
environments, do you
manage them manually”

Everything not automated
reduces your Agility

Manual triggers can take a long time

Manual = Time++;

AS your manager might say

Time == Money();

What techniques can reduce manual steps”

You could consider using DevOps:
Cl server, CD server, Infrastructure as Code to automate
as mush as possible your release process

What techniques can reduce manual steps”

o

Publish ‘
Source Code Development oot Run Automated

Team Functional Tests
! H

Version Control Provision and Deploy to

System f / D \ Test Environment
/ \ |

il S

~—

Source Code Build
Set-up Test
‘Fixtures’

H
1! < 2 o
: 7) Built Artefact
Static Code Run Automated Code Coverage

Analysis Unit Tests Analysis

Continuous Integration

What techniques can reduce manual steps”

CONTINUOUS TDELIVERY

R — e — = p— e —_ TN . /-_--
\ ’ | ‘ I .
' ”: —_— ? ‘1 ?j

c"f‘ --\I'.
T

CON\\N\)O\)S DE’\’LOYMENT

[|—>' . I AccErTane TN ©

Continuous Delivery/Deployment

What techniques can reduce manual steps”

Puppet

node 'codecamp.ro' {
package { 'ruby’
ensure => 'latest’
3
¥

CODECAMP 2012 @hurrycane

Infrastructure As Code

Are your Agile Demos
done from unreleased
software

(aka Works at my desk)

SHIPPING [S A FEATURE

Your software must have it

Your software must have it!

Demos from unreleased software /
Ditficulty to release in production

Involve Ops peop

Releasing in prod s

NOU

anyone, anytime, L

e In sprints
|d be doable by

sing a single click

(rollback is obviously a feature you will want!)

CD—Continuous
Delivery/Deployment

Continuous Delivery/Deployment

Always have a shippable version available for your customers

Ex: GO CD (from Thoughtworks - now Open Source)
You can integrate your Cl servers (Jenkins) with a CD server

| |
Sove —1 Bol | [—

-

r—’—é;o\ 3\ V\S r_’.ﬁP—O‘AUQj’“\OV\

Test Env

TeST & ReLeAsE

Continuous Delivery/Deployment

A good practice to deploy gradually using cascaded
environments:

* (Development)

e Jest
e |Less resources, used mostly to validate business logic

o Staging/Pre-Production
* More representative of the production environment. Can be
used for load/pertormance testing. Typically uses a data set
that is a copy of the Production data set.

e Production

|laC—Infrastructure as
Code

Infrastructure as Code

Your code is under CM, but your
infrastructure iIs typically not! It also needs
to be versioned, tracked and automated!

Infrastructure as Code

There are so many tools available. But essentially,
keep ALL under source control, including what it takes
to reproduce your production environment from ZERO

* How to restart a hardware environment/virtual machines
* How to install the platform on the machines

* How to install the applications on the platforms

 How to configure the whole stack

* The databases schemas and content

- Everything!

Infrastructure as Code

If you are not convinced, think about your disaster
recovery plan (you have one, right?)

What if your server room is destroyed by water/
fire”? (or the one from your cheap cloud provider...

v

With |aC at least, the software part is covered in
case of disaster

DevOps

DevOps

A Good app without an infrastructure to run it is useless...

A superb, scalable infrastructure without an app adding
business value to a customer IS also useless...

You need both!

DevOps should not be a separate team! It serves to
oridge the gap between development and operations
teams.

And if you are not convinced that DevOps cannot
typically be a single person’s responsibility...

DevOps related tools

2 Fm

PERIODIC TABLE OF DEVOPS TOOLS (v1) XebiaLabs AWS

Amazon Web
Os Open Source Build @ Services

10
Fr Free cl @ |Repo Mgmt &
Fm Freemium Deployment @ Containerization Eq o

Pd Paid Cloud/laas/Paas (' |Release Mgmt « 13 s °
En Enterprise 81/ Monitor] 7 Security 2y
onitoring
Ssh Hk
SSH
31 Pd

Heroku

23 25 36

Mr Bb Tr

Rs
lagnager ot Kubernetes | Rackspace

41 43 44 49 Fr 53 54 Fm

Bm Sn Cr ' Cp Pk Bx
BuildMaster CircleCl i Capistrano Bluemix
59 Pd 61 62 67 En 70 71 72

Ta Sh Cc Rd No |Eb Ad
Visual Build Shippable CruiseControl | Arti i RapidDeploy CA Nolio ElasticBox Apprenda
77 Os 79 Fm 85 Os

Lb Ca Ud (Mo |cf

Continua Cl UrbaCode

En | 89 Os | 90 (03

Share

EBE 92 En |93 94 97 98
Embed Ur Ls Bm Pl Sr

<> [=a) BR UrbanCode |CAService |BMCRelease Plutora Serena
Release Virtualization | Process Release Release

Become Excellent! 107 Os | 108 Fm | 109 Os 112

Ki Nr Ni Gr

New Relic Ganglia i Graphite

What could be potential
solutions to deliver and
faster?

1- Testing (TDD, BDD)
2- ClI
3- CD
4- |aC

DEMO

Demo content

« GO CD presentation
e Application build pipeline
* connected to GitHub for app code
e running unit tests
e Jriggering Staging pipeline on success
e using Vagrant + VirtualBox + Ansible to provision
oroduction like environment for system tests
e connected to GitHub for [aC code
* [riggering Deployment pipeline on success
e using Ansible (Tower) to provision non VM
production multiple environments

. ANSIBLE

GitHub% “

Application Build/Unit
tests

Continuous Integration pipeline
Triggered on code changes

Staging pipeline

For deployment + system testing
Triggered on new application integration OR new laC code

Deployment pipelines

Used to actually deploy the application into production
triggered on successful staging pipelines OR manually when needed

DIScussIion
How do you do it”?

Agile Values vs.
Agile Practices

CRAFTSMANSHIP MANIFESTO

http://manifesto.softwarecraftsmanship.org/

NOT ONLY WORKING SOFTWARE,
BUT ALSO

NOT ONLY RESPONDING TO CHANGE,
BUT ALSO

NOT ONLY INDIVIDUALS AND INTERACTIONS,

BUT ALSO A
NOT ONLY CUSTOMER COLLABORATION,

BUT ALSO

Agility iIs more than Agile values and

ceremonies
It is acting as per the Agile values and

producing software with related best practices

0." ‘r" "~y

BOY SCOUT RULE.

Lowwe your code Detier thoe you found 2

But where to start”

Every Agile cycle, try to improve on those issues, trying
to automate everything you can, while having the
conversation with your key stakeholders

Questions or
comments”

Thanks!

softwarethatmattersdoneright.com
|
http://ca.linkedin.com/in/stevemercier

Copyright Software That Matters... Done Right! Inc. 2016

http://softwarethatmattersdoneright.com
http://ca.linkedin.com/in/stevemercier

Backup

Install provisioning
tools
EX: Vagrant +
VirtualBox

- vagrant init hashicorp/precise64
- vagrant up
- vagrant ssh
- vagrant destroy

EXx: See how using the Vagrant
file, we can provision the
platform

config.vm.box = “hashicorp/precise64’
config.vm.network :forwarded_port, guest: 80, host: 4567
config.vm.provision :shell, path: “bootstrap.sh’

#!/usr/bin/env bash

apt-get update
apt-get install -y apache?
if I'[-L /var/www]; then
rm -rf /var/www
In -fs /vagrant /var/www
fi
apt-get install -y python3

How to Install the
applications on the
platforms

Ex: We can simply reuse the GIT clone using a shared
folder between host and guest VM or use similar
platform provisioning technique to perform a git clone in
the VM after provisioning

